Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712082

RESUMO

PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses.

2.
Proteins ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372168

RESUMO

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.

3.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293217

RESUMO

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.

4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769256

RESUMO

Herpes simplex virus 1 (HSV-1) enters sensory neurons with the potential for productive or latent infection. For either outcome, HSV-1 must curtail the intrinsic immune response, regulate viral gene expression, and remove host proteins that could restrict viral processes. Infected cell protein 0 (ICP0), a virus-encoded E3 ubiquitin ligase, supports these processes by mediating the transfer of ubiquitin to target proteins to change their location, alter their function, or induce their degradation. To identify ubiquitination targets of ICP0 during productive infection in sensory neurons, we immunoprecipitated ubiquitinated proteins from primary adult sensory neurons infected with HSV-1 KOS (wild-type), HSV-1 n212 (expressing truncated, defective ICP0), and uninfected controls using anti-ubiquitin antibody FK2 (recognizing K29, K48, K63 and monoubiquitinated proteins), followed by LC-MS/MS and comparative analyses. We identified 40 unique proteins ubiquitinated by ICP0 and 17 ubiquitinated by both ICP0 and host mechanisms, of which High Mobility Group Protein I/Y (HMG I/Y) and TAR DNA Binding Protein 43 (TDP43) were selected for further analysis. We show that ICP0 ubiquitinates HMG I/Y and TDP43, altering protein expression at specific time points during productive HSV-1 infection, demonstrating that ICP0 manipulates the sensory neuronal environment in a time-dependent manner to regulate infection outcome in neurons.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Humanos , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células Receptoras Sensoriais/metabolismo
5.
Microbiol Spectr ; 11(1): e0194322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36537798

RESUMO

We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses. IMPORTANCE We have demonstrated that aurora kinases play a role during HSV-1 lytic infection. Three aurora kinase inhibitors significantly impaired HSV-1 immediate-early gene expression. This led to a potent reduction in HSV-1 protein expression and viral replication. Together, our results illustrate a novel role for aurora kinases in the HSV-1 lytic cycle and demonstrate that aurora kinase inhibitors can restrict HSV-1 replication. Furthermore, these aurora kinase inhibitors also reduced the replication of murine coronavirus and vaccinia virus, suggesting that multiple viral families utilize the aurora kinases for their own replication.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Vírus de RNA , Animais , Camundongos , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Linhagem Celular , Herpes Simples/genética , DNA/metabolismo , RNA/metabolismo , Estágios do Ciclo de Vida
6.
Microbiol Spectr ; 10(4): e0059322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35730940

RESUMO

Herpes simplex virus 1 (HSV-1) is a human pathogen capable of establishing lifelong latent infections that can reactivate under stress conditions. A viral immediate early protein that plays important roles in the HSV-1 lytic and latent infections is the viral E3 ubiquitin ligase, ICP0. ICP0 transactivates all temporal classes of HSV-1 genes and facilitates viral gene expression. ICP0 also impairs the antiviral effects of interferon (IFN)-ß, a component of host innate defenses known to limit viral replication. To begin to understand how ICP0 allows HSV-1 to disarm the IFN-ß response, we performed genetic analyses using a series of ICP0 truncation mutants in the absence and presence of IFN-ß in cell culture. We observed that IFN-ß pretreatment of cells significantly impaired the replication of the ICP0 truncation mutants, n212 and n312, which code for the first 211 and 311 amino acids of ICP0, respectively; this effect of IFN-ß correlated with decreased HSV-1 early and late gene expression. This increased sensitivity to IFN-ß was not as apparent with the ICP0 mutant, n389. Our mapping studies indicate that loss of 77 amino acids from residues 312 to 388 in the N-terminal half of ICP0 resulted in a virus that was significantly more sensitive to cells pre-exposed to IFN-ß. This 77 amino acid region contains a phospho-SUMO-interacting motif or -SIM, which we propose participates in ICP0's ability to counteract the antiviral response established by IFN-ß. IMPORTANCE Interferons (IFNs) are secreted cellular factors that are induced by viral infection and limit replication. HSV-1 is largely refractory to the antiviral effects of type 1 IFNs, which are synthesized shortly after viral infection, in part through the activities of the viral regulatory protein, ICP0. To understand how ICP0 impedes the antiviral effects of type 1 IFNs, we used a series of HSV-1 ICP0 mutants and examined their viral replication and gene expression levels in cells stimulated with IFN-ß (a type 1 IFN). Our mapping data identifies a discrete 77 amino acid region in the N-terminal half of ICP0 that facilitates HSV-1 resistance to IFN-ß. This region of ICP0 is modified by phosphorylation and binds to the posttranslational modification SUMO, suggesting that HSV, and potentially other viruses, may counteract type 1 IFN signaling by altering SUMO and/or SUMO modified cellular proteins.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Interferon Tipo I , Ubiquitina-Proteína Ligases , Aminoácidos , Antivirais/farmacologia , Herpesvirus Humano 1/genética , Humanos , Proteínas Imediatamente Precoces/genética , Interferon Tipo I/imunologia , Infecção Latente/virologia , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/genética
7.
Viruses ; 14(5)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632611

RESUMO

We previously isolated an HSV-1 mutant, KOS-NA, that contains two non-synonymous mutations in UL39. One of the mutations, resulting in an R950H amino acid substitution in ICP6, renders KOS-NA severely neuro-attenuated and significantly reduces HSV-1 latency. Vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated eye diseases even at a very low immunizing dose, indicating its utility as a vaccine scaffold. Because KOS-NA contains a neuro-attenuating mutation in a single gene, we sought to improve its safety by deleting a portion of the UL29 gene whose protein product, ICP8, is essential for viral DNA replication. Whereas KOS-NA reduced replication of HSV-1 challenge virus in the corneal epithelium and protected mice against blepharitis and keratitis induced by the challenge virus, KOS-NA/8- and an ICP8- virus were significantly less efficacious except at higher doses. Our results suggest that the capacity to replicate, even at significantly reduced levels compared with wild-type HSV-1, may be an important feature of an effective vaccine. Means to improve safety of attenuated viruses as vaccines without compromising efficacy should be sought.


Assuntos
Herpesvirus Humano 1 , Animais , Chlorocebus aethiops , Replicação do DNA , DNA Viral , Herpesvirus Humano 1/genética , Camundongos , Vacinas Atenuadas , Células Vero , Proteínas Virais/genética , Replicação Viral
8.
Antiviral Res ; 194: 105160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384824

RESUMO

Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that results in lifelong infections due to its ability to cycle between lytic replication and latency. As an obligate intracellular pathogen, HSV-1 exploits host cellular factors to replicate and aid in its life cycle. HSV-1 expresses infected cell protein 0 (ICP0), an immediate-early regulator, to stimulate the transcription of all classes of viral genes via its E3 ubiquitin ligase activity. Here we report an automated, inexpensive, and rapid high-throughput approach to examine the effects of small molecule compounds on ICP0 transactivator function in cells. Two HSV-1 reporter viruses, KOS6ß (wt) and dlx3.1-6ß (ICP0-null mutant), were used to monitor ICP0 transactivation activity through the HSV-1 ICP6 promoter:lacz expression cassette. A ≥10-fold difference in ß-galactosidase activity was observed in cells infected with KOS6ß compared to dlx3.1-6ß, demonstrating that ICP0 potently transactivates the ICP6 promoter. We established the robustness and reproducibility with a Z'-factor score of ≥0.69, an important criterium for high-throughput analyses. Approximately 19,000 structurally diverse compounds were screened and 76 potential inhibitors of the HSV-1 transactivator ICP0 were identified. We expect this assay will aid in the discovery of novel inhibitors and tools against HSV-1 ICP0. Using well-annotated compounds could identify potential novel factors and pathways that interact with ICP0 to promote HSV-1 gene expression.


Assuntos
Herpesvirus Humano 1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Ativação Transcricional/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Coleta de Dados , Expressão Gênica , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia , Ativação Transcricional/genética
9.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950407

RESUMO

We previously isolated a herpes simplex virus 1 (HSV-1) mutant, KOS-NA, that carries two nonsynonymous mutations in UL39, resulting in L393P and R950H amino acid substitutions in infected cell protein 6 (ICP6). Our published data studying KOS-NA pathogenesis strongly suggest that one of these ICP6 substitutions expressed from KOS-NA, R950H, severely impaired acute viral replication in the eyes and trigeminal ganglia of mice after inoculation onto the cornea and consequently impaired establishment and reactivation from latency. Because of its significant neuroattenuation, we tested KOS-NA as a potential prophylactic vaccine against HSV-1 in a mouse model of corneal infection. KOS-NA stimulated stronger antibody and T cell responses than a replication-competent ICP0-null mutant and a replication-incompetent ICP8-null mutant optimized for immunogenicity. Immunizations with the ICP0-, ICP8-, and KOS-NA viruses all reduced replication of wild-type HSV-1 challenge virus in the corneal epithelium to similar extents. Low immunizing doses of KOS-NA and the ICP8- virus, but not the ICP0- virus, protected mice against eyelid disease (blepharitis). Notably, only KOS-NA protected almost completely against corneal disease (keratitis) and greatly reduced latent infection by challenge virus. Thus, vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated disease of the eye, even at a very low immunizing dose. These results suggest that KOS-NA may be the foundation of an effective prophylactic vaccine to prevent or limit HSV-1 ocular diseases.IMPORTANCE HSV-1 is a ubiquitous human pathogen that infects the majority of the world's population. Although most infections are asymptomatic, HSV-1 establishes lifelong latency in infected sensory neurons, from which it can reactivate to cause deadly encephalitis or potentially blinding eye disease. No clinically effective vaccine is available. In this study, we tested the protective potential of a neuroattenuated HSV-1 mutant (KOS-NA) as a vaccine in mice. We compared the effects of immunization with KOS-NA to those of two other attenuated viruses, a replication-competent (ICP0-) virus and a replication-incompetent (ICP8-) virus. Our data show that KOS-NA proved superior to the ICP0- and ICP8-null mutants in protecting mice from corneal disease and latent infection. With its significant neuroattenuation, severe impairment in establishing latency, and excellent protective effect, KOS-NA represents a significant discovery in the field of HSV-1 vaccine development.


Assuntos
Herpesvirus Humano 1/genética , Vacinas contra Herpesvirus/imunologia , Ceratite Herpética/prevenção & controle , Proteínas Virais/genética , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Vacinas contra Herpesvirus/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Ceratite Herpética/imunologia , Ceratite Herpética/virologia , Camundongos , Mutação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Células Vero , Proteínas Virais/imunologia , Latência Viral , Replicação Viral
10.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321311

RESUMO

In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.


Assuntos
Proteínas do Capsídeo , Herpes Simples , Herpesvirus Humano 1/fisiologia , Mutação Puntual , Ativação Viral/genética , Latência Viral/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Herpes Simples/genética , Herpes Simples/metabolismo , Herpes Simples/patologia , Vacinas contra o Vírus do Herpes Simples/genética , Vacinas contra o Vírus do Herpes Simples/metabolismo , Camundongos , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/genética
11.
Antiviral Res ; 120: 1-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936965

RESUMO

The herpes simplex virus type 1 (HSV-1) immediate-early phosphoprotein infected cell protein 0 (ICP0) is a potent transcriptional activator of viral genes and is required for efficient viral replication and reactivation from latency. However, it is largely unknown what role specific cellular factors play in the transactivator function of ICP0. With the long-term goal of identifying these factors, we developed a cell-based assay in a 96-well format to measure this activity of ICP0. We designed a system using a set of HSV-1 GFP reporter viruses in which the expression of GFP is potently induced by ICP0 in cell culture. The initial feasibility of this system was confirmed over a 24-h period by fluorescence microscopy. We adapted this assay to a 96-well plate format, quantifying GFP expression with a fluorescence scanner. Our results indicate that the cell-based assay we developed is a valid and effective method for examining the transactivating activity of ICP0. This assay can be used to identify cellular factors that regulate the transactivating activity of ICP0.


Assuntos
Técnicas Citológicas/métodos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Ativação Transcricional , Ubiquitina-Proteína Ligases/metabolismo , Fluorometria , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Coloração e Rotulagem/métodos
12.
Methods ; 90: 3-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862948

RESUMO

The ubiquitin-proteasome system is an essential cellular process that plays a fundamental role in the regulation of protein stability. This pathway is tightly controlled by a sequential cascade of enzymatic steps that culminates in the formation of a poly-ubiquitin chain onto the substrate protein targeted for 26S proteasome degradation. Through a process of co-evolution viruses have evolved mechanisms to utilize or suppress this pathway in order to enhance their replication and spread. One of the first proteins to be expressed during herpes simplex virus 1 (HSV-1) infection is ICP0, a viral RING-finger E3 ubiquitin ligase that targets a variety of cellular proteins for ubiquitination and proteasome-dependent degradation. This activity is required in order for ICP0 to efficiently stimulate the onset of HSV-1 lytic infection and viral reactivation from latency. While it is clear that the RING-finger domain of ICP0 plays an important role in the biology of HSV-1, methods for accurately quantifying its biochemical activity are currently lacking. Here we describe a protocol that enables the quantitative measurement of the ubiquitin ligase activity of ICP0 using near-infrared (IR) western blot imaging. The use of such imaging technology provides an accurate means to examine the biochemical and kinetic parameters of RING-finger ubiquitin ligases in solution, and may provide significant application for inhibitor studies.


Assuntos
Western Blotting/métodos , Herpesvirus Humano 1/enzimologia , Proteínas Imediatamente Precoces/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Herpesvirus Humano 1/patogenicidade , Ubiquitinação
13.
J Virol ; 89(9): 5171-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694605

RESUMO

The cyclin-dependent kinase 5 (CDK-5) activating protein, p35, is important for acute herpes simplex virus 1 (HSV-1) replication in mice. This report shows that HSV-1 increases p35 levels, changes the primary localization of CDK-5 from the nucleus to the cytoplasm, and enhances CDK-5 activity during lytic or acute infection. Infected neurons also stained positive for the DNA damage response (DDR) marker γH2AX. We propose that CDK-5 is activated by the DDR to protect infected neurons from apoptosis.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Neurônios/virologia , Fosfotransferases/biossíntese , Replicação Viral , Animais , Apoptose , Dano ao DNA , Histonas/análise , Camundongos Knockout
14.
Cells ; 3(4): 1131-58, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25513827

RESUMO

Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML's activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1.

15.
Cells ; 3(2): 438-54, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24852129

RESUMO

The herpes simplex virus type 1 (HSV-1) encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0), is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0's E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10), SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0's capacity to impair the activation of interferon (innate) regulatory mediators that include IFI16 (IFN γ-inducible protein 16), MyD88 (myeloid differentiation factor 88), and Mal (MyD88 adaptor-like protein). We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B) inflammatory signaling pathway. Finally, ICP0's paradoxical relationship with USP7 (ubiquitin specific protease 7) and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

16.
J Virol ; 87(24): 13287-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089549

RESUMO

Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in sensory neurons and can reactivate from latency under stress conditions. To promote lytic infection, the virus must interact with specific cellular factors to evade the host's antiviral defenses. The HSV-1 E3 ubiquitin ligase, infected cell protein 0 (ICP0), activates transcription of viral genes, in part, by mediating the degradation of certain cellular proteins that play a role in host antiviral mechanisms. One component of the cellular defenses that ICP0 disrupts is the suborganelle, nuclear domain 10 (ND10), by inducing the degradation and dissociation of the major organizer of ND10, a promyelocytic leukemia (PML) and ND10 constituent, Sp100. Because previously identified domains in ICP0 explain only partially how it directs the degradation and dissociation of PML and Sp100, we hypothesized that additional regions within ICP0 may contribute to these activities, which in turn facilitate efficient viral replication. To test this hypothesis, we used a series of ICP0 truncation mutants and examined PML protein levels and PML and Sp100 immunofluorescence staining in human embryonic lung cells. Our results demonstrate that two overlapping regions within the central N-terminal portion of ICP0 (residues 212 to 311) promoted the dissociation and degradation of PML and dissociation of Sp100 (residues 212 to 427). In conclusion, we have identified two additional regions in ICP0 involved in altering ND10 antiviral defenses in a cell culture model of HSV-1 infection.


Assuntos
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/enzimologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Antígenos Nucleares/genética , Autoantígenos/genética , Regulação Viral da Expressão Gênica , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Ligação Proteica , Proteólise , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
17.
J Virol ; 87(24): 13510-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089574

RESUMO

The herpes simplex virus 1 (HSV-1) immediate-early protein, infected cell protein 22 (ICP22), is required for efficient replication in restrictive cells, for virus-induced chaperone-enriched (VICE) domain formation, and for normal expression of a subset of viral late proteins. Additionally, ICP22 is important for optimal acute viral replication in vivo. Previous studies have shown that the US1 gene that encodes ICP22, produces an in-frame, N-terminally truncated form of ICP22, known as US1.5. To date, studies conducted to characterize the functions of ICP22 have not separated its functions from those of US1.5. To determine the individual roles of ICP22 and US1.5, we made viral mutants that express either ICP22 with an M90A mutation in the US1.5 initiation codon (M90A) or US1.5 with three stop codons introduced upstream of the US1.5 start codon (3×stop). Our studies showed that, in contrast to M90A, 3×stop was unable to replicate efficiently in the eyes and trigeminal ganglia of mice during acute infection, to efficiently establish a latent infection, or to induce VICE domain formation and was only mildly reduced in its replication in restrictive HEL-299 cells and murine embryonic fibroblasts (MEFs). Both mutants enhanced the expression of the late viral proteins virion host shutoff (vhs) and glycoprotein C (gC) and inhibited viral gene expression mediated by HSV-1 infected cell protein 0 (ICP0). When we tested our mutants' sensitivity to type I interferon (beta interferon [IFN-ß]) in restrictive cells, we noticed that the plating of the ICP22 null (d22) and 3×stop mutants was reduced by the addition of IFN-ß. Overall, our data suggest that US1.5 partially complements the functions of ICP22.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Chlorocebus aethiops , Feminino , Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Chaperonas Moleculares/genética , Células Vero , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral
18.
PLoS One ; 8(3): e58233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472163

RESUMO

Primary cells are often used to study viral replication and host-virus interactions as their antiviral pathways have not been altered or inactivated; however, their use is restricted by their short lifespan. Conventional methods to extend the life of primary cultures typically utilize viral oncogenes. Many of these oncogenes, however, perturb or inactivate cellular antiviral pathways, including the interferon (IFN) response. It has been previously shown that expression of the telomerase reverse transcriptase (TERT) gene extends the life of certain cell types. The effect that TERT expression has on the innate antiviral response to RNA- and DNA-containing viruses has not been examined. In the current study, we introduced the human TERT (hTERT) gene into a primary human embryonic lung (HEL-299) cell strain, which is known to respond to the type I IFN, IFN-ß. We show that the resulting HEL-TERT cell line is capable of replicating beyond 100 population doublings without exhibiting signs of senescence. Treatment with IFN-ß resulted in the upregulation of four model IFN stimulated genes (ISGs) in HEL-299 and HEL-TERT cells. Both cell lines supported the replication of herpes simplex virus type 1 (HSV-1) and vesicular stomatitis virus (VSV) and impaired the replication of both viruses upon IFN-ß pretreatment. Introduction of the viral oncoprotein, simian virus 40 (SV40) large T-antigen, which is frequently used to immortalize cells, largely negated this effect. Taken together, our data indicate that expression of hTERT does not alter type 1 IFN signaling and/or the growth of two viruses, making this cell line a useful reagent for studying viral replication and virus-cell interactions.


Assuntos
Sobrevivência Celular , Fibroblastos/citologia , Interferon Tipo I/metabolismo , Telomerase/fisiologia , Apoptose , Linhagem Celular , Senescência Celular , Fibroblastos/virologia , Humanos , Pulmão/citologia , Vírus Sendai/fisiologia , Transdução de Sinais , Vesiculovirus/fisiologia , Replicação Viral
19.
Future Microbiol ; 8(3): 311-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23464370

RESUMO

During its productive infection, HSV-1 dramatically remodels the architecture and physiology of the host cell nucleus. The immediate-early proteins, the first viral proteins to be expressed during infection, are key players in this process. Here, we review the known properties and functions of immediate-early protein ICP22. Although this polypeptide has received less attention than other immediate-early proteins, the published evidence indicates that it mediates several striking changes to important host nuclear systems, including those involved in RNA polymerase II transcription, cell cycle regulation and protein quality control. Recent genetic analyses suggest that these alterations can promote HSV-1 productive infection. Thus, future work on ICP22 is likely to reveal novel mechanisms by which herpesviruses, and possibly other DNA viruses, manipulate the host cell nucleus to enhance their replication.


Assuntos
Núcleo Celular/virologia , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/metabolismo , Replicação Viral , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos
20.
Virus Res ; 173(2): 436-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23339898

RESUMO

Strains of HSV-1 have been noted to vary in their pathogenesis. We compared the replication of strains KOS and McKrae in mice by two routes of infection, ocular and vaginal. Peripheral replication of KOS was similar (cornea) or attenuated over time (vagina) compared with McKrae; however, McKrae replicated in the nervous system to significantly higher levels than KOS after inoculation by either route. Host genetic background strongly influenced the capacity for virus entry into the nervous system from the vagina. KOS and McKrae replicated equivalently after intracranial inoculation, indicating that McKrae's pathogenic phenotype is linked to neuroinvasiveness rather than neurovirulence.


Assuntos
Sistema Nervoso Central/virologia , Córnea/virologia , Encefalite Viral/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/patogenicidade , Vagina/virologia , Animais , Encefalite Viral/patologia , Feminino , Infecções por Herpesviridae/patologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...